Inhibition of stress-inducible HSP70 impairs mitochondrial proteostasis and function
نویسندگان
چکیده
Protein quality control is an important component of survival for all cells. The use of proteasome inhibitors for cancer therapy derives from the fact that tumor cells generally exhibit greater levels of proteotoxic stress than do normal cells, and thus cancer cells tend to be more sensitive to proteasome inhibition. However, this approach has been limited in some cases by toxicity to normal cells. Recently, the concept of inhibiting proteostasis in organelles for cancer therapy has been advanced, in part because it is predicted to have reduced toxicity for normal cells. Here we demonstrate that a fraction of the major stress-induced chaperone HSP70 (also called HSPA1A or HSP72, but hereafter HSP70) is abundantly present in mitochondria of tumor cells, but is expressed at quite low or undetectable levels in mitochondria of most normal tissues and non-tumor cell lines. We show that treatment of tumor cells with HSP70 inhibitors causes a marked change in mitochondrial protein quality control, loss of mitochondrial membrane potential, reduced oxygen consumption rate, and loss of ATP production. We identify several nuclear-encoded mitochondrial proteins, including polyadenylate binding protein-1 (PABPC1), which exhibit decreased abundance in mitochondria following treatment with HSP70 inhibitors. We also show that targeting HSP70 function leads to reduced levels of several mitochondrial-encoded RNA species that encode components of the electron transport chain. Our data indicate that small molecule inhibitors of HSP70 represent a new class of organelle proteostasis inhibitors that impair mitochondrial function in cancer cells, and therefore constitute novel therapeutics.
منابع مشابه
Structural Basis for the Inhibition of HSP70 and DnaK Chaperones by Small-Molecule Targeting of a C-Terminal Allosteric Pocket
The stress-inducible mammalian heat shock protein 70 (HSP70) and its bacterial orthologue DnaK are highly conserved nucleotide binding molecular chaperones. They represent critical regulators of cellular proteostasis, especially during conditions of enhanced stress. Cancer cells rely on HSP70 for survival, and this chaperone represents an attractive new therapeutic target. We have used a struct...
متن کاملSignaling and Regulation HSP70 Inhibition by the Small-Molecule 2-Phenylethynesulfonamide Impairs Protein Clearance Pathways in Tumor Cells
The evolutionarily conserved stress-inducible HSP70 molecular chaperone plays a central role in maintaining protein quality control in response to various forms of stress. Constitutively elevated HSP70 expression is a characteristic of many tumor cells and contributes to their survival. We recently identified the smallmolecule 2-phenylethyenesulfonamide (PES) as a novel HSP70 inhibitor. Here, w...
متن کاملHSP70 inhibition by the small-molecule 2-phenylethynesulfonamide impairs protein clearance pathways in tumor cells.
The evolutionarily conserved stress-inducible HSP70 molecular chaperone plays a central role in maintaining protein quality control in response to various forms of stress. Constitutively elevated HSP70 expression is a characteristic of many tumor cells and contributes to their survival. We recently identified the small-molecule 2-phenylethyenesulfonamide (PES) as a novel HSP70 inhibitor. Here, ...
متن کاملCombined chemical-genetic approach identifies cytosolic HSP70 dependence in rhabdomyosarcoma.
Cytosolic and organelle-based heat-shock protein (HSP) chaperones ensure proper folding and function of nascent and injured polypeptides to support cell growth. Under conditions of cellular stress, including oncogenic transformation, proteostasis components maintain homeostasis and prevent apoptosis. Although this cancer-relevant function has provided a rationale for therapeutically targeting p...
متن کاملMulti-layered molecular mechanisms of polypeptide holding, unfolding and disaggregation by HSP70/HSP110 chaperones
Members of the HSP70/HSP110 family (HSP70s) form a central hub of the chaperone network controlling all aspects of proteostasis in bacteria and the ATP-containing compartments of eukaryotic cells. The heat-inducible form HSP70 (HSPA1A) and its major cognates, cytosolic HSC70 (HSPA8), endoplasmic reticulum BIP (HSPA5), mitochondrial mHSP70 (HSPA9) and related HSP110s (HSPHs), contribute about 3%...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017